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A nonlinear one-dimensional process driven by a multiplicative exponentially correlated three-level Mar-
kovian noise(trichotomous noiseis considered. An explicit second-order linear ordinary differential equation
for the stationary probability density distribution is obtained for the process. In the case of a linear process with
an additive trichotomous noise the exact formula for the steady-state distribution is obtained. The well-known
dichotomous noise can be regarded as a special case of the trichotomous noise. As a rule, the system variable
has three specific values where the probability density distribution can be singular. For the case of the Hongler
model the dependence of the behavior of the stationary probability density on the noise parameters is inves-
tigated in detail and illustrated by a phase diagram. Applications to the Gompertz and Verhulst models are also
discussed[S1063-651X99)03708-3

PACS numbd(s): 05.40—a, 02.50-r

I. INTRODUCTION time of the noise as well as on the flatness paramesies
also[11]). As to the noise-induced transitions, their depen-
Within the past two decades the behavior of open systemdence on the flatness has hardly been studied at all, for flat-
depending on the environment has deserved considerable atess is constant at both the dichotomous noise and GCN,
tention. Simple physical, biological, chemical, and other sysbeing equal to 1 and 3, respectively.
tems can take several unusual stationary states in case their As dichotomous noise switches a deterministic process
parameters are affected by a noiselike influence from theandomly between two static perturbation states, the station-
environment(for reference surveys s¢é&-3|). Such an in- ary probability density distribution of the system variable
fluence can be rather complex, but only a limited number ofemains between two distinct values, taking different ex-
abstractions admit exact solutions in theory. The most protrema for various noise parameter regimes. By configurations
ductive abstraction is the case of Gaussian white noise thaff those extrema the phase diagram of the noise parameters
corresponds to a vanishing correlation time of the noise; thigs divided into domains. As trichotomous noise takes, in ad-
is closely related to diffusion processes in physics. dition, a zero value with a given probability, the support of
White noises have some nonphysical properties and thethe probability density has also a third characteristic point
application requires some caftef. [4]). Thus, in the past that corresponds to the unperturbed system. As can be ex-
decades attention has been paid to colored noises of finifgected, this involves a more complex phase diagram, in par-
correlation times as more physical ones. Of these, the ongcular a nontrivial dependence on the flatness parameter.
most frequently used is the Gaussian colored nBEN) In this paper we consider one-dimensional systems deter-
generated by the Ornstein-Uhlenbeck process. Unfortunatelynined by first-order differential equations with a nonlinear
it turns out that a rather limited class of noise-driven modeldeterministic part and a multiplicative noise term composed
systems admits exact solutions in the presence of GG3). of an exponentially correlated Markovian trichotomous pro-
Another noise popular because of its tractability is sym-cess. For the determination of the corresponding stationary
metric dichotomous noise, also called random telegrapiprobability density an explicit second-order linear ordinary
noise[2,5-7]. Kitaharaet al.[5,6] have calculated exact sta- differential equation is derived. It is notable that exact for-
tionary probability densities for the Verhulst system coupledmulas for the steady-state distributions can also be found for
to dichotomous noise. They have also presented a compre- special class of model equations that can be transformed
hensive phase diagram to demonstrate the noise-inducédto linear equations with additive noise terms. Comprehen-
transitions in the space of noise parameters. Their succesive phase diagrams are presented to demonstrate the noise-
inspired us to seek solutions of a more general case of rafinduced transitions.
dom three-level telegraph processes that may be céiled The structure of the paper is as follows. In Sec. Il the
chotomous noisg8]. model and exact differential equation for the stationary prob-
A three-level Markovian noise different from the trichoto- ability density are presented. In Sec. Il a linear system with
mous noise used by us has been applied to investigate ttalditive trichotomous noise is considered. The exact steady-
reversals of noise-induced floy®,10]. It has been shown state distribution is found. In Sec. IV the pure correlation-
that the direction of the flow can depend on the correlatiortime-induced transitions and the most general properties of
the stationary probability density in the phase space of the
noise parameters are analyzed and the phase diagram is pre-
*Electronic address: ain@tpu.ee sented. In Sec. V the symmetric Hongler mofizi8,19 is
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taken under closer consideration. The dependence of the dx 1

noise-induced transitions on the noise amplitude is investi- i - ) +900t(t),  g(x):=1-g(xa0). (6)

gated. The results obtained for trichotomous noises are com- 0

pared with those of the dichotomous noises and the GCN For the calculation of the stationary probability density

models. Section VI contains a comparison of the results obP(x) the results of13] can be applied. Notably, it is shown

tained for the Hongler model with those of the Gompertz andhere that if a process(t) satisfies the stochastic differential

the generalized Verhulst models, and concluding remarks. equation(6), wheref(t) is a generalized random telegraph
process and the probability flux vanishes, the stationary

II. TRICHOTOMOUS MARKOVIAN NOISE probability densityP(x) is a solution of the operator equa-
' tion
Here we explicate the idea of dichotomous noise further -
to a symmetric three-level random telegraph prock¢$ h(x)P(x)=—vg(x)(al, )P(x). (7)

that_ may be calleq a trichotomous Process. Th's ISa randornere the angular brackets mean averaging over the values
stationary Markovian process that consists of jumps betweenf th q iabl dth tor-Lis the i

three valuea=a,, 0, and—ag. The jumps follow in time ot the random vana .aan € operator, 1S the Inverse
according to a Poisson process, while the values occur witRf the operatot, defined by

the stationary probabilities . d
Lag(x) = vih(x) + 5 {[h(x) +ag(x) J4(x)}.
Ps(ag)=Ps(—ag)=0q, Ps0)=1-2q. (o X
In our equation(6) the random variable takes the values
a,, — ap With the probabilityg and the value 0 with the prob-
ability 1—2q and the following differential equation for the
determination of the stationary probability dendfyx) cor-
responding to Eq(6) can be obtained from Ed7):

After [10] the transition probabilities between the states
f(t)= tay and 0 can be obtained as follows:

P(iao,t+7'|o,t):P(_ao,t+T|ao,t):P(ao,t+T|_ao,t)

=q(1-e "), d 5
vA(X)P(x) + &{Q(X)[AZ(X)—%]P(X)}
P(Ot+7|+ap,t)=(1-2q)(1—e™ "),

A(X)B(x)| vA(X)P(x)

d
™0, 0<q<1/2, »>0. (2) =~

The process is completely determined by Edsand(2). d 5 5
One can also calculate the mean valéjeand the correlation + Gx19OOLAT(X) —ap]P(x)}
function (f(t),f(t")):

|

d
(f(1))=0, +(29—1)vag g [B(X)P(x)], ®
(f(t),f(t’))=<a2>e_”|t_t’|=ange_”lt_t/l. 3) where
. ) ) ) h(x) v d -1
It can be seen that is the reciprocal of the noise correlation Ai=——, B(X):=| —=+-—A(X)
fime: 9(x) g(x) ' dx
In the case ofg=1/2 (a dichotomous noigethe last term
v=1Urgor . vanishes and Eq(8) is satisfied by every solution of the
equation

The noise intensity? is defined as

d

. PAX)P(X) + - {g()[A%(x) ~ag]P(x)} =O0.
02==2f (f(t+7),f(1))dr=4qad/v. (4 x
0 The latter corresponds to E(p) in casef(t) is a dichoto-

The flatness parametércan be expressed in a very simple mous noise. This has been investigated in detail by several
way by the probabilityg:  &:=(FA(t))/(f2(t))2=1/(2q). ~ @authors[2,5,6]. .

Next systems described by only one variable are consid- N thez tncf;oto.mo_uts é-correlated  limit, v—oo,
ered; i.e., our phenomenological kinetic equation is of theéto—*, o°=4qag/v is finite, Eq.(8) reduces to the follow-

type ing Fokker-Planck equation with zero-flux boundary condi-
tions:
> _h f 5 o d
at N0 TeLm), © —AX)P(X)+ 5 [g(X)P(x)]=0.
whereh andg are deterministic functions ani(t) is a tri-  Hence, the resulting steady-state distribution is

chotomous noise. 1§(x,f(t)) is an odd function irf, i.e.,

9(x,0)=0, theng(x,(1))=g(x.a0)f(t)/a, and Eq.(5) is P = Sexd 2 J D09 ©
reducible to a stochastic differential equati@DE) g o?) g?(x) )’
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wherec is a normalization constant. It can be seen that the gx X
steady states for trichotomous and Gaussiacorrelated a=—rX|n(N), INN=InNo+f(t), No>0, r>0.
fluctuations are indistinguishable. (15)
It is remarkable that in the case of trichotomous noise the
steady-state distributioR(x) corresponding to Ed6) is de-  This equation in its deterministic form was first proposed
termined by a relatively simple second-order linear ordinarywith r<0) in connection with a mortality analysis of eld-
differential equation and the behavior B{x) can be inves- erly people. The appropriate transformed variable is given by
tigated by the general theory of such equations. Unfortu-

nately exact solutions of E48) can be obtained but in few 1 X

cases. In the next section a class of SDE’s reducible to linear y= Fln N_o' (16)
equations that can be handled analytically is considered in

detail. Finally, the condition(10) is also valid to the generalized

Verhulst mode[15,16
IIl. LINEAR SYSTEM WITH ADDITIVE TRICHOTOMOUS

FLUCTUATIONS: EXACT STATIONARY PROBABILITY d_X:LX 1— f)” >0, r>0 17)
DENSITY dt  u K/ T ’ ’
In the case of in the case where the carrying capadftyfluctuates as
9 )= hix) 2 10 Nl
9(x) g h()==rg(x) +h(x) 5 9(x), (10 2k =2 K—O) +f(t), Kg>0.

the nonlinear SDE6) can be transformed into the linear The appropriate new variable is
SDE

1
d = —(1/KE—1/xH).
d—)tlz—rerf(t), (11 y M( 0 )

Obviously, the mode{17) is biologically meaningful only if
wherer>0 is a constant, by defining a new variable Y el giealy g y

ag<r/uK§. (18

x dx
y= j g(x) e For the procesg(t) of Eq.(11) the stationary probability
densityP(y) can be found. Following from the form of the
procesd(t), the support of the stationary probability density
P(y) lies in the interval &,/r,—ay/r). It also follows from
_P Eqg. (11) that in the stationary state the mean value of the
POO=POGX). (12 pr?)cesg/ is zero,{y)s=0, andythe dispersion equals

In the following we restrict ourselves to systems where the )
condition (10) holds. One of these is the Hongler model. . 208,

The stochastic Hongler model in its dimensionless form is {y >S_r(v+r) '
given by the differential equatiof8,12]

whereC is a constant. Definin®(y) as the stationary prob-
ability density for the procesg(t), one can get

(19

It should be noted that all odd momer{tg?** 1), vanish in

B tanh(2y2x) + the stationary state and the probability den$i is sym-
dax 1 A h i d the probability den§iy) i
dt 2.2 anf(22x) 4 costi2\2x)’ metric with respect t¢=0. Evidently, from Eq/(8) the fol-
lowing second-order differential equation can be obtained for
N=No+f(t), Ap=0, (13 Tj(y):
where timet is measured in units of the relaxation time of . v _ d aq\ 2]
the deterministic system. The Hongler model as such does (——1) —yP—d—Hyz— = P]
not correspond to any known process in nature. But in the r y r
case ofx<1 it coincides(to the precision of members pro- d (V - od (], (a0 )}
. 2 . . - _ o _ _
portional tox“) with the genetic mod€l2,7,14 dy y ; y dy”y ; P]
du 1/2—u+u(1 +1/2 (1-2q)va3 d
R — — = - 14 ~
at u+iu(l—-u), u=x . N 0o (20
rs dy
The latter has many essential applications in genetics and
chemistry. In this model By the following exchange of variables,
y=12sin(2y2x)—\,, r=1. (14 z=(rylap)?, (21)

Another example is the Gompertz mod#&b] Eq. (20) can be transformed into a hypergeometric equation
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d? d
— * * * .
z(1 z)d—ZZW(z)Jr[y (a*+pB +1)z]dZW(z)
—a* B*W(z)=0, (22
where y* =3/2—qv/r, B*=1-v/2r, a*=3/2—v/2r, and

W(z(y))=P(y).
Two constants of integration of the general solution of Eq

(22) can be specified, by keeping in mind that the solution

P(y)=WI(z(y)) is symmetric with respect to the point
=0 and by the application of the normalization condition of

P(y) and of the conditior{19). After quite simple but volu-
minous calculations it can be obtained that

r21—1;/r
aoB(qv/r,(1—q)vir)
X |12/ VIR (@, 8, ;1 2),
(23

whereB(\,xk)=T'(\)T'(x)/T'(\+ k) is the beta functionk
is the hypergeometric functig@lso known as,F,), I' is the
gamma function, an@=a—1/2=(1—-2q) v/2r, andy=(1

P(y)=W(z)=

—q)v/r. At the values of the parameters satisfying the in-

equality

1
2q
the hypergeometric series in ER3) converges also at

=0 and consequently the for23) can be applied to ana-

lyze the properties of the solutid?(y) in the domain of Eq.
(24). In the case of

14

> 24

1

14

r
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FIG. 1. The @,v,ay) phase diagram for the steady-state behav-
ior of the Hongler's model with trichotomous noise. The curves
(a)—(f) correspond to the following condition&) »=1/(1—-q), (b)
v=2/(1-q), (c) v=1/(2q), (d) v=1/q, (e) v=3/(2q), and(f) q
=3(v2—4v+5/2)/v(v*—3v—1). The distributions ofP(x(y))
versusy for the different domains formed by the curves are
sketched. Within the domains the effect of noise amplitagen
the shape of is denoted by asterisks: * fa,>a., and ** for
ag>ag, .

No. 1: v<1/(2q), w»<1/(1—q). In this domain the
highly probable states are concentrated in the vicinity of the
pointsy=—1,0,1. There the probability density approaches
infinity.

No. 2: v<1/(1—q), v»>1/(2q). Here again the most
probable states are concentrated around the pojnts
—1,0,1. At the pointsy=—1,1 the probability density ap-
proaches infinity. Aty=0 we find a local finite peak, with
the derivative approaching-«, if y——0, and —, if y
—+0, respectively.

No. 3: 1/(1-q)<v<2/(1—q), v<1/(2q). The states
of high probability are concentrated in the vicinity &0

it is practicable, by applying the properties of the hypergeowhereP(y)— . At the boundarie®(=1)=0, but there the

metric function, to convert Eq23) to the form
rzlf vir

agB(qv/r,(1—q)v/r)

X|1_Z|(1—q)v/r—1zqu/r—1/2

(y)=W(z)=

XF(y—a,y=B;v:1-2). (26)

The hypergeometric series in this equation converges at
=0, if the condition(25) is fulfilled.

IV. PURE CORRELATION-TIME-INDUCED TRANSITIONS

Next, we shall consider the most general properties of the No. 7: v>2/(1—q),

derivative of the probability density is unbounded.

No. 4: 1/(1-q)<v<2/(1—q), 1lg>v>1/(2q). P(y)
has one finite peak, situated yat 0. At the boundaries the
probability density is zero and at each of the three points
(y=0,%1) its derivative is unbounded.

No. 5: 1/(1-qg)<w<2/(1—q), wv>1/q. The probabil-
ity density has the only maximum, gt 0, where its deriva-
tive is zero. At the boundarie®(+1)=0 and the derivative
is unbounded.

No. 6: v>2/(1—q), w»<1/(2q). The most probable

states are neay=0 where P(y) is unbounded. At the

boundaries both the probability density and its derivative
vanish.

1/g>v>1/(2q). The stationary

probability densityP(y) in the phase space of the parametersprobability density is monomodal with a finite peak yat
d. v, andag. First, it should be noted that the noise amplitude—q . The derivative is unbounded there. At the boundaries

ay appears inl3(y) only as a scale factor. Consequently,
paying no tribute to generality, one can takg=1 andr
=1 (time is in units of macroscopic relaxation timer)/
when investigating the behavior &(y). Proceeding from
Egs. (23) and (26) one can distinguish between eight do-
mains in the two-dimensional phase spagge’] (see Fig. L

both P(+1) and its derivative vanish.

No. 8: v>2/(1—-q), wv>1/q. The only most probable
state is aty=0, where the probability density is finite and its
derivative vanishes. At the boundaries both the probability
density and its derivative approach zero.

All the singularities are integrable. Attention should be
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called to the fact that the least value of the noise correlation As a, is growing, phase transitions different from those
time 7.,,= 1/v for which the three-value structure of noise is considered can be observed in domains Nos. 3-8 of the
still immediately reflected in the form of the stationary prob- phase spacer>1/(1—q)]. Notably, ifaé exceeds a critical
ability density, depends on the probabiliy valueaZ, (in generalaZ #a2,), then the probability density
P(x) can be characterized by three probability maxima on
the graph. This characteristic causes domain No. 8c in the
phase diagram in Fig. 1, separated from domain No. 8b by
the curve(f) determined by

Teor=1v>1—-q>1/2.

For short correlation times, i.e., in the trichotomous
5-correlated limit, it follows from Eq(9) that P(y) is just
the Gaussian distribution function 3(v2—4v+5/2)

q= m, y=5. (31)

~ vr
P(y)=C eXp( ——zyz). (27) -
4qag On the left side of this curvea?,<a?,, and as the noise

amplitude grows, there will be two phase transitions: at the
increasing ofa3 overaZ, there is a transition from a phase

initial problem of the stochastic equation, it should be noteo}’\”th.One prpbablllty denSIty maximum to ozne Wlth-three
maxima, while at a further increase ovag=aZ, there is a

that all attributes oP(y) by which the phase domains NOS. 44 ition to a phase with two maxima. At the right side of

l—§ were disting_uished_ on_ the diagram,_i.e., the singularitie§ne curve(31) a phase transition occurs between phases with
of P(y) and of its derivative at the pointg==*1,0, alsoO  gne and two maxima.

characterize the probability densiB(x). In the case of dichotomous noise=1/2 and so we have

aZ=aZ,=2(v—2). As to the interval 2 v<3 belonging to
V. NOISE-INDUCED TRANSITIONS OF THE HONGLER'S domain No. 5a, where trichotomous noise generates either

whereC is the normalization coefficient.
Returning to the probability densit{i2) specific to our

MODEL one or three maxima to the probability density, the limit of
In order to discuss the influence of a noise amplitage g—1/2 leads to the disappearance of thefentral maximum.
on the shape of the steady-state distributitx), the sym- As the calculation of the critical paramet&, in the gen-
metric (\o=0) Hongler model(13) is taken under closer €ral case requires the solution of a transcendental equation, it
consideration. By denoting=y?/a3 one can get is impossible to determing?, by simple expressions like Eq.
(29). Actually, numerical values can be obtained by com-
P(x):4~/1+aozz/2W(z), (29 puter and some estimations can also be made. Still, a precise

analysis is possible at those points of the phase space where
whereW(z(y))=P(y) andy is determined by Eq(14). In- the probability densityP(x) is expressed by elementary
vestigating the extrema of functiof®8) near the pointy functions. This could be illustrated by the following ex-
=0, it is easy to conclude that the most probable state at th@MPles. _ _
pointz=0 in domains Nos. 5b, 8b, and 8c of the phase space (1) On the curver=1/q (see Fig. 1 the densityP(x)
(v,q) [wherev>3/(2q)] may disappear as the noise ampli- @kes the form
tude exceeds a critical valwe,, . Instead of a local maxi-

_ v—2

mum of P(x) there will be a minimum ay=0, symmetri- P(x)= 2(v—1) A1+ Y (1_ M )

cally to which new local maxima are formed at both sides. 8o 2 8o

The latter move away fronry=0 asa, continues growing. _

The critical noise amplitude is given by It can be seen easily that the critical parametgris given

by
2(v—2)(v—3)
2 _ ~
&= oqu-3 (29 a2 =8(v—2)(v—1).

(ii) For the pointv=6, q=1/3(domain No. 8bone can

It can be easily seen thaf, has a minimum at the value get

of the correlation timer=1/v:
-1 y? ly|

ry=(5—4q) 1~ (1/3)(3—4a)(1—29)]<1/3. P(x)=C/1+ —( M
(30) 2\ a

3

1
3|
a, 3

The minimal value of the critical parametea (r,) whereC is the normalizing coefficient. Three phases with the
=2(1/73—6)=6 monotonously decreasesasincreases. It ~ transitions aig,=22.5 andag, =24 can be discerned.

is interesting to note that in domains Nos. 5a and 84 (iii) In the pointv=2, q=1/4[see curve(c) in Fig. 1]

<w<3/(2q)], where the probability densiti?(x) also has a the probability density?(x) takes the form
smooth maximuntthe derivative is zenoaty=0, there is no

such local phase transition; i.e., there is no critical amplitude 1 y2 |1+\1-y%a]
a., at which the peak-damping mechanism is replaced by a P(x)= 1+ —In|————|.
peak-splitting one. 2may 2 |1-+1-y¥a?
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A

The critical parameter equadg,~ 27.09. q
The phase diagram of the Hongler model with trichoto- 0.5 ; A
mous noise displayed in Fig. 1 is rather complicated, consist- & #5

ing of 16 different phases. Analogously, dichotomous noise g 4 %,
induces five phases in the phase spaag,®), whereas “ 7& I |
A
A

#

#4
Gaussian colored noise does but 2@ However, there is a
common feature for the phase transitions of these three nois™ M / \m/

patterns at the Hongler model: a growth of the noise intensity

changes the central maximum of the probability density at?%2 P

y=0 to a minimum; i.e., the maximum is split into tweee / /Uﬂ\ Al \\
Fig. 1, domains Nos. 5b, 8b, and)8€ollowing[2], one can 0.1 A ‘ - (d
see that in the cases of both the Hongler model with trichoto- LA @
mous as well as dichotomous noises and the GCN model, thi 0 @ () .
noise correlation time,, influences the location of the pure 1 2 3 4 5 6 78y
noise-induced transition point at which the stationary distri- FIG. 2. The @, ,a,) phase diagram for the steady-state behav-
bution aty=0 switches over from a monpmodal toa blr_n_o- jor of the Gompertz’ and generalized Verhulst models with tri-
dal behavior. Recall that in the white noise case the C”t'calihotomous noise. The curvés—(d) coincide with those in Fig. 1:
variance at which this phenomenon occursfs= 0i=4. In (@ v=1/(1—q), (b) v=2/(1—q), (c) v=1/(2q), and(d) »=1/g.

the case of GCN with the correlation function The distributions ofP(x(y)) versusy for the different domains

formed by the curves are sketched. In domains Nos. 3, 4, 6, and 7
the variants with additional extrema are caused by the condition

2
|
#3

,U«2
(f(t+7),f(1))= Z—Ve—vlfl, v=1Urco,,

ay>a, .
the white-noise limit corresponds t@—, v—o such Teor<20/3. (32)
that w?/v?>=0? is finite. Hence, for white noise one can
write There is also an upper limit for the noise correlation time,
) beyond which the critical behavior disappears. Evideratﬁl,
02:< ﬁ) 4 tends to infinity, if 7oo,—2q/3 andq+1/2. It can also be
c v/, 7 seen that i< 0.3, then the critical intensity of the noise

increases monotonously &g, increases. In this sense the
which could be compared with the corresponding value formodel resembles the GCN Hongler model.
the GCN case: In caseq>0.3 there is another critical value for the cor-
relation time:

1
7=3[29-V(3—4a)(1/2-q)].

2
M
0'(2::(;> =4+47,,.
C

Here the effect of the nonvanishing noise correlation time h lation time is | han th h
increases the noise intensity, which is necessary to induck (€ correlation time is |ess than thag,,< 7, then asreo
transitions[2]. In the case of dichotomous noise the white- €Créasesy increases and vice versa. Thus, one can see
noise limit corresponds t@y—, w»—o such thato? here common features with models with dichotomous noises.

It is most remarkable that there is not only an upper limit

r the noise correlation time, present also in the case of
ichotomous noises, but there appear also nonzero minima of
the critical intensityo2( 7o) at 7gor=72,9>>0.3:

=2aj/v is finite. The intensity?, necessary to induce criti-
cal behavior in the model, decreases as the correlation tim
Teor= 1/lv increase$2]:

2
2aj

=4-8750r, Toor<l1/2. o2(75)=4(1—673)=4/3.

c

There is an upper limit for the noise correlation time, beyond VI. DISCUSSION

which the critical behavior disappears. ) )
In the case of trichotomous noise the white-noise limit We have applied the method used in Secs. IV and V to the

Gompertz and generalized Verhulst models, E4%) and
(17). Their phase diagrams are similar to each other, while
12 different phases can be distinguished theee Fig. 2
Compared with the symmetric Hongler model there are the

corresponds t@g—o, wv—o such thatcrz=4qa(2)/v is fi-
nite. The intensityaﬁ, necessary to induce critical behavior
in the model, is of the form

4q 2 following characteristic features beside asymmeinyThere
2_ % =4(1-2 are no extrema of the stationary probability density at the
O¢ ( Tcor) A . .

L valuesy>0 in the domain ofy>1/(1—q) (domains Nos.

3-38). (ii) In domains Nos. 5 and @herev>1/q) P(x(y)) is
)>4_87CO“ monomodal at any value of the noise amplitualg at a
growing ao the maximum shifts to lesser values wf (iii)

1-2q
1+3rcor2—

X
q—37cor
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The asymmetric Hongler modéihere\ ;<0) at a decreas- cability of models with trichotomous noises in some bio- and
ing Ao behaves ever more similarly to the Gompertz andecosystems. For instance, wind either can carry the seeds of
Verhulst models, especially #,<|\o|. a plant to different directiongtwo in a one-dimensional
A major virtue of the models with trichotomous noise is €as¢ depending on its directiomoise parametea = ao)

that they constitute another case admitting an exact analytf?rlnow_lt'here €=0) if its speied tdoeles not e>|<c|i,-ed '31 critical
cal solution for the stationary probability density for any Y&U€- 1N€ Same way casual water flow In a lake eitner can or
value of the correlation time and the flatness paraméter cannot cause a flux of sediments and, |n_pr|nC|pIe, the phases
B . P met in our diagrams may well emerge in some way in the
=1/(2q). Though both the dichotomous and trichotomousyesylting sediment distributions. In natural systems transport

noises may be too rough approximations in most practicapf particles can also be caused by noise-induced currents
cases, the latter is more flexible, including all cases of thgjenerated at ratchetlike potentials. As has been sHagh
dichotomous noises and, as such, revealing the essence of tfie value of the noise flatness can be decisive for both the
peculiarities of the latter. intensity and the direction of the current, and besides it can

It is worth while mentioning that experimental evidence cause a separation of particles. It is remarkable that with the
of noise-induced transitions has been obtaiffedreference trichotomous noises the flatness parameter, contrary to the
surveys se¢2,3]). Markovian trichotomous noise is rather dichotomous and GCN noises, can be anything from ¢.to
well suited for experimental realization and hence a detailed Details known about the solutions of E@) may be of
quantitative comparison of experimental results and theoretsse in testing approximate methods in the theory of stochas-
ical predictions should be feasible. We envisage direct applitic differential equations.
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