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Trichotomous noise-induced transitions
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A nonlinear one-dimensional process driven by a multiplicative exponentially correlated three-level Mar-
kovian noise~trichotomous noise! is considered. An explicit second-order linear ordinary differential equation
for the stationary probability density distribution is obtained for the process. In the case of a linear process with
an additive trichotomous noise the exact formula for the steady-state distribution is obtained. The well-known
dichotomous noise can be regarded as a special case of the trichotomous noise. As a rule, the system variable
has three specific values where the probability density distribution can be singular. For the case of the Hongler
model the dependence of the behavior of the stationary probability density on the noise parameters is inves-
tigated in detail and illustrated by a phase diagram. Applications to the Gompertz and Verhulst models are also
discussed.@S1063-651X~99!03708-3#

PACS number~s!: 05.40.2a, 02.50.2r
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I. INTRODUCTION

Within the past two decades the behavior of open syst
depending on the environment has deserved considerab
tention. Simple physical, biological, chemical, and other s
tems can take several unusual stationary states in case
parameters are affected by a noiselike influence from
environment~for reference surveys see@1–3#!. Such an in-
fluence can be rather complex, but only a limited numbe
abstractions admit exact solutions in theory. The most p
ductive abstraction is the case of Gaussian white noise
corresponds to a vanishing correlation time of the noise;
is closely related to diffusion processes in physics.

White noises have some nonphysical properties and t
application requires some care~cf. @4#!. Thus, in the past
decades attention has been paid to colored noises of fi
correlation times as more physical ones. Of these, the
most frequently used is the Gaussian colored noise~GCN!
generated by the Ornstein-Uhlenbeck process. Unfortuna
it turns out that a rather limited class of noise-driven mo
systems admits exact solutions in the presence of GCN@2,3#.

Another noise popular because of its tractability is sy
metric dichotomous noise, also called random telegr
noise@2,5–7#. Kitaharaet al. @5,6# have calculated exact sta
tionary probability densities for the Verhulst system coup
to dichotomous noise. They have also presented a com
hensive phase diagram to demonstrate the noise-ind
transitions in the space of noise parameters. Their suc
inspired us to seek solutions of a more general case of
dom three-level telegraph processes that may be calledtri-
chotomous noise@8#.

A three-level Markovian noise different from the trichot
mous noise used by us has been applied to investigate
reversals of noise-induced flow@9,10#. It has been shown
that the direction of the flow can depend on the correlat
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time of the noise as well as on the flatness parameter~see
also @11#!. As to the noise-induced transitions, their depe
dence on the flatness has hardly been studied at all, for
ness is constant at both the dichotomous noise and G
being equal to 1 and 3, respectively.

As dichotomous noise switches a deterministic proc
randomly between two static perturbation states, the stat
ary probability density distribution of the system variab
remains between two distinct values, taking different e
trema for various noise parameter regimes. By configurati
of those extrema the phase diagram of the noise param
is divided into domains. As trichotomous noise takes, in
dition, a zero value with a given probability, the support
the probability density has also a third characteristic po
that corresponds to the unperturbed system. As can be
pected, this involves a more complex phase diagram, in
ticular a nontrivial dependence on the flatness paramete

In this paper we consider one-dimensional systems de
mined by first-order differential equations with a nonline
deterministic part and a multiplicative noise term compos
of an exponentially correlated Markovian trichotomous p
cess. For the determination of the corresponding station
probability density an explicit second-order linear ordina
differential equation is derived. It is notable that exact fo
mulas for the steady-state distributions can also be found
a special class of model equations that can be transfor
into linear equations with additive noise terms. Compreh
sive phase diagrams are presented to demonstrate the n
induced transitions.

The structure of the paper is as follows. In Sec. II t
model and exact differential equation for the stationary pr
ability density are presented. In Sec. III a linear system w
additive trichotomous noise is considered. The exact stea
state distribution is found. In Sec. IV the pure correlatio
time-induced transitions and the most general propertie
the stationary probability density in the phase space of
noise parameters are analyzed and the phase diagram is
sented. In Sec. V the symmetric Hongler model@2,8,12# is
1374 © 1999 The American Physical Society
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PRE 60 1375TRICHOTOMOUS NOISE-INDUCED TRANSITIONS
taken under closer consideration. The dependence of
noise-induced transitions on the noise amplitude is inve
gated. The results obtained for trichotomous noises are c
pared with those of the dichotomous noises and the G
models. Section VI contains a comparison of the results
tained for the Hongler model with those of the Gompertz a
the generalized Verhulst models, and concluding remark

II. TRICHOTOMOUS MARKOVIAN NOISE

Here we explicate the idea of dichotomous noise furt
to a symmetric three-level random telegraph processf (t)
that may be called a trichotomous process. This is a rand
stationary Markovian process that consists of jumps betw
three valuesa5a0, 0, and2a0. The jumps follow in time
according to a Poisson process, while the values occur
the stationary probabilities

Ps~a0!5Ps~2a0!5q, Ps~0!5122q. ~1!

After @10# the transition probabilities between the sta
f (t)56a0 and 0 can be obtained as follows:

P~6a0 ,t1tu0,t !5P~2a0 ,t1tua0 ,t !5P~a0 ,t1tu2a0 ,t !

5q~12e2nt!,

P~0,t1tu6a0 ,t !5~122q!~12e2nt!,

t.0, 0,q,1/2, n.0. ~2!

The process is completely determined by Eqs.~1! and~2!.
One can also calculate the mean value^ f & and the correlation
function ^ f (t), f (t8)&:

^ f ~ t !&50,

^ f ~ t !, f ~ t8!&5^a2&e2nut2t8u52qa0
2e2nut2t8u. ~3!

It can be seen thatn is the reciprocal of the noise correlatio
time:

n51/tcor .

The noise intensitys2 is defined as

s2
ª2E

0

`

^ f ~ t1t!, f ~ t !&dt54qa0
2/n. ~4!

The flatness parameterd can be expressed in a very simp
way by the probabilityq: dª^ f 4(t)&/^ f 2(t)&251/(2q).

Next systems described by only one variable are con
ered; i.e., our phenomenological kinetic equation is of
type

dx

dt
5h~x!1g„x, f ~ t !…, ~5!

whereh and g are deterministic functions andf (t) is a tri-
chotomous noise. Ifg„x, f (t)… is an odd function inf, i.e.,
g(x,0)50, then g„x, f (t)…5g(x,a0) f (t)/a0 and Eq. ~5! is
reducible to a stochastic differential equation~SDE!
he
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dx

dt
5h~x!1g~x! f ~ t !, g~x!ª

1

a0
g~x,a0!. ~6!

For the calculation of the stationary probability dens
P(x) the results of@13# can be applied. Notably, it is show
there that if a processx(t) satisfies the stochastic differentia
equation~6!, where f (t) is a generalized random telegrap
process and the probability flux vanishes, the station
probability densityP(x) is a solution of the operator equa
tion

h~x!P~x!52ng~x!^aL̂a
21&P~x!. ~7!

Here the angular brackets^ & mean averaging over the value
of the random variablea and the operatorL̂a

21 is the inverse
of the operatorL̂a defined by

L̂ac~x!5nc~x!1
d

dx
$@h~x!1ag~x!#c~x!%.

In our equation~6! the random variablea takes the values
a0 ,2a0 with the probabilityq and the value 0 with the prob
ability 122q and the following differential equation for th
determination of the stationary probability densityP(x) cor-
responding to Eq.~6! can be obtained from Eq.~7!:

nA~x!P~x!1
d

dx
$g~x!@A2~x!2a0

2#P~x!%

52
d

dx H A~x!B~x!FnA~x!P~x!

1
d

dx
$g~x!@A2~x!2a0

2#P~x!%G J
1~2q21!na0

2 d

dx
@B~x!P~x!#, ~8!

where

Aª
h~x!

g~x!
, B~x!ªF n

g~x!
1

d

dx
A~x!G21

.

In the case ofq51/2 ~a dichotomous noise! the last term
vanishes and Eq.~8! is satisfied by every solution of th
equation

nA~x!P~x!1
d

dx
$g~x!@A2~x!2a0

2#P~x!%50.

The latter corresponds to Eq.~6! in casef (t) is a dichoto-
mous noise. This has been investigated in detail by sev
authors@2,5,6#.

In the trichotomous d-correlated limit, n˜`,
a0˜`, s254qa0

2/n is finite, Eq.~8! reduces to the follow-
ing Fokker-Planck equation with zero-flux boundary con
tions:

2A~x!P~x!1
s2

2

d

dx
@g~x!P~x!#50.

Hence, the resulting steady-state distribution is

P~x!5
c

g
expS 2

s2Ex h~x!

g2~x!
dxD , ~9!
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wherec is a normalization constant. It can be seen that
steady states for trichotomous and Gaussiand-correlated
fluctuations are indistinguishable.

It is remarkable that in the case of trichotomous noise
steady-state distributionP(x) corresponding to Eq.~6! is de-
termined by a relatively simple second-order linear ordin
differential equation and the behavior ofP(x) can be inves-
tigated by the general theory of such equations. Unfo
nately exact solutions of Eq.~8! can be obtained but in few
cases. In the next section a class of SDE’s reducible to lin
equations that can be handled analytically is considere
detail.

III. LINEAR SYSTEM WITH ADDITIVE TRICHOTOMOUS
FLUCTUATIONS: EXACT STATIONARY PROBABILITY

DENSITY

In the case of

g~x!
d

dx
h~x!52rg~x!1h~x!

d

dx
g~x!, ~10!

the nonlinear SDE~6! can be transformed into the linea
SDE

dy

dt
52ry1 f ~ t !, ~11!

wherer .0 is a constant, by defining a new variable

y5Ex dx

g~x!
1C,

whereC is a constant. DefiningP̃(y) as the stationary prob
ability density for the processy(t), one can get

P~x!5 P̃„y~x!…/g~x!. ~12!

In the following we restrict ourselves to systems where
condition ~10! holds. One of these is the Hongler model.

The stochastic Hongler model in its dimensionless form
given by the differential equation@3,12#

dx

dt
52

1

2A2
tanh~2A2x!1

l

4 cosh~2A2x!
,

l5l01 f ~ t !, l0>0, ~13!

where timet is measured in units of the relaxation time
the deterministic system. The Hongler model as such d
not correspond to any known process in nature. But in
case ofx!1 it coincides~to the precision of members pro
portional tox2) with the genetic model@2,7,14#

du

dt
51/22u1lu~12u!, u5x11/2.

The latter has many essential applications in genetics
chemistry. In this model

y5A2 sinh~2A2x!2l0 , r 51. ~14!

Another example is the Gompertz model@15#
e

e

y

-

ar
in

e

s

es
e

nd

dx

dt
52rx lnS x

ND , ln N5 ln N01 f ~ t !, N0.0, r .0.

~15!

This equation in its deterministic form was first propos
~with r ,0) in connection with a mortality analysis of eld
erly people. The appropriate transformed variable is given

y5
1

r
ln

x

N0
. ~16!

Finally, the condition~10! is also valid to the generalize
Verhulst model@15,16#

dx

dt
5

r

m
xF12S x

K D mG , m.0, r .0, ~17!

in the case where the carrying capacityK fluctuates as

r

m S 1

K D m

5
r

m S 1

K0
D m

1 f ~ t !, K0.0.

The appropriate new variable is

y5
1

m
~1/K0

m21/xm!.

Obviously, the model~17! is biologically meaningful only if

a0,r /mK0
m . ~18!

For the processy(t) of Eq. ~11! the stationary probability
densityP̃(y) can be found. Following from the form of th
processf (t), the support of the stationary probability densi
P̃(y) lies in the interval (a0 /r ,2a0 /r ). It also follows from
Eq. ~11! that in the stationary state the mean value of
processy is zero,^y&s50, and the dispersion equals

^y2&s5
2qa0

2

r ~n1r !
. ~19!

It should be noted that all odd moments^y2k11&s vanish in
the stationary state and the probability densityP̃(y) is sym-
metric with respect toy50. Evidently, from Eq.~8! the fol-
lowing second-order differential equation can be obtained
P̃(y):

S n

r
21D Xnr y P̃2

d

dy H Fy22S a0

r D 2G P̃J C
5

d

dy
FyXn

r
y P̃2

d

dy H Fy22S a0

r D 2G P̃J CG
1

~122q!na0
2

r 3

d

dy
P̃. ~20!

By the following exchange of variables,

z5~ry /a0!2, ~21!

Eq. ~20! can be transformed into a hypergeometric equat
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PRE 60 1377TRICHOTOMOUS NOISE-INDUCED TRANSITIONS
z~12z!
d2

dz2 W~z!1@g* 2~a* 1b* 11!z#
d

dz
W~z!

2a* b* W~z!50, ~22!

where g* 53/22qn/r , b* 512n/2r , a* 53/22n/2r , and
W„z(y)…5 P̃(y).

Two constants of integration of the general solution of E
~22! can be specified, by keeping in mind that the solut
P̃(y)5W„z(y)… is symmetric with respect to the pointy
50 and by the application of the normalization condition
P̃(y) and of the condition~19!. After quite simple but volu-
minous calculations it can be obtained that

P̃~y!5W~z!5
r212n/r

a0B„qn/r ,~12q!n/r …

3u12zu(12q)n/r 21F~a,b;g;12z!,

~23!

whereB(l,k)[G(l)G(k)/G(l1k) is the beta function,F
is the hypergeometric function~also known as2F1), G is the
gamma function, andb5a21/25(122q)n/2r , andg5(1
2q)n/r . At the values of the parameters satisfying the
equality

n

r
.

1

2q
, ~24!

the hypergeometric series in Eq.~23! converges also atz
50 and consequently the form~23! can be applied to ana
lyze the properties of the solutionP̃(y) in the domain of Eq.
~24!. In the case of

n

r
,

1

2q
, ~25!

it is practicable, by applying the properties of the hyperg
metric function, to convert Eq.~23! to the form

P̃~y!5W~z!5
r212n/r

a0B„qn/r ,~12q!n/r …

3u12zu(12q)n/r 21zqn/r 21/2

3F~g2a,g2b;g;12z!. ~26!

The hypergeometric series in this equation convergesz
50, if the condition~25! is fulfilled.

IV. PURE CORRELATION-TIME-INDUCED TRANSITIONS

Next, we shall consider the most general properties of
probability densityP̃(y) in the phase space of the paramet
q, n, anda0. First, it should be noted that the noise amplitu
a0 appears inP̃(y) only as a scale factor. Consequent
paying no tribute to generality, one can takea051 and r
51 ~time is in units of macroscopic relaxation time 1/r )
when investigating the behavior ofP̃(y). Proceeding from
Eqs. ~23! and ~26! one can distinguish between eight d
mains in the two-dimensional phase space (q,n) ~see Fig. 1!.
.
n

f

-

-

e
s

No. 1: n,1/(2q), n,1/(12q). In this domain the
highly probable states are concentrated in the vicinity of
points y521,0,1. There the probability density approach
infinity.

No. 2: n,1/(12q), n.1/(2q). Here again the mos
probable states are concentrated around the pointsy5
21,0,1. At the pointsy521,1 the probability density ap
proaches infinity. Aty50 we find a local finite peak, with
the derivative approaching1`, if y˜20, and 2`, if y
˜10, respectively.

No. 3: 1/(12q),n,2/(12q), n,1/(2q). The states
of high probability are concentrated in the vicinity ofy50
whereP̃(y)˜`. At the boundariesP̃(61)50, but there the
derivative of the probability density is unbounded.

No. 4: 1/(12q),n,2/(12q), 1/q.n.1/(2q). P̃(y)
has one finite peak, situated aty50. At the boundaries the
probability density is zero and at each of the three poi
(y50,61) its derivative is unbounded.

No. 5: 1/(12q),n,2/(12q), n.1/q. The probabil-
ity density has the only maximum, aty50, where its deriva-
tive is zero. At the boundariesP̃(61)50 and the derivative
is unbounded.

No. 6: n.2/(12q), n,1/(2q). The most probable
states are neary50 where P̃(y) is unbounded. At the
boundaries both the probability density and its derivat
vanish.

No. 7: n.2/(12q), 1/q.n.1/(2q). The stationary
probability density is monomodal with a finite peak aty
50. The derivative is unbounded there. At the boundar
both P̃(61) and its derivative vanish.

No. 8: n.2/(12q), n.1/q. The only most probable
state is aty50, where the probability density is finite and i
derivative vanishes. At the boundaries both the probabi
density and its derivative approach zero.

All the singularities are integrable. Attention should b

FIG. 1. The (q,n,a0) phase diagram for the steady-state beh
ior of the Hongler’s model with trichotomous noise. The curv
~a!–~f! correspond to the following conditions:~a! n51/(12q), ~b!
n52/(12q), ~c! n51/(2q), ~d! n51/q, ~e! n53/(2q), and ~f! q
53(n224n15/2)/n(n223n21). The distributions ofP„x(y)…
versus y for the different domains formed by the curves a
sketched. Within the domains the effect of noise amplitudea0 on

the shape ofP is denoted by asterisks: * fora0.ãcr and ** for
a0.acr .
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called to the fact that the least value of the noise correla
time tcor51/n for which the three-value structure of noise
still immediately reflected in the form of the stationary pro
ability density, depends on the probabilityq:

tcor51/n.12q.1/2.

For short correlation times, i.e., in the trichotomo
d-correlated limit, it follows from Eq.~9! that P̃(y) is just
the Gaussian distribution function

P̃~y!.C expS 2
nr

4qa0
2 y2D , ~27!

whereC is the normalization coefficient.
Returning to the probability density~12! specific to our

initial problem of the stochastic equation, it should be no
that all attributes ofP̃(y) by which the phase domains No
1–8 were distinguished on the diagram, i.e., the singulari
of P̃(y) and of its derivative at the pointsy561,0, also
characterize the probability densityP(x).

V. NOISE-INDUCED TRANSITIONS OF THE HONGLER’S
MODEL

In order to discuss the influence of a noise amplitudea0
on the shape of the steady-state distributionP(x), the sym-
metric (l050) Hongler model~13! is taken under close
consideration. By denotingz[y2/a0

2 one can get

P~x!54A11a0
2z/2W~z!, ~28!

whereW„z(y)…5 P̃(y) andy is determined by Eq.~14!. In-
vestigating the extrema of function~28! near the pointy
50, it is easy to conclude that the most probable state at
point z50 in domains Nos. 5b, 8b, and 8c of the phase sp
(n,q) @wheren.3/(2q)# may disappear as the noise amp
tude exceeds a critical valueacr . Instead of a local maxi-
mum of P(x) there will be a minimum aty50, symmetri-
cally to which new local maxima are formed at both sid
The latter move away fromy50 asa0 continues growing.
The critical noise amplitude is given by

acr
2 5

2~n22!~n23!

2qn23
. ~29!

It can be easily seen thatacr
2 has a minimum at the valu

of the correlation timet[1/n:

t15~524q!21@12A~1/3!~324q!~122q!#<1/3.
~30!

The minimal value of the critical parameteracr
2 (t1)

52(1/t1
226)>6 monotonously decreases ast1 increases. It

is interesting to note that in domains Nos. 5a and 8a@1/q
,n,3/(2q)#, where the probability densityP(x) also has a
smooth maximum~the derivative is zero! at y50, there is no
such local phase transition; i.e., there is no critical amplitu
acr at which the peak-damping mechanism is replaced b
peak-splitting one.
n

d

s

he
e

.

e
a

As a0 is growing, phase transitions different from tho
considered can be observed in domains Nos. 3–8 of
phase space@n.1/(12q)#. Notably, if a0

2 exceeds a critical

value ãcr
2 ~in general,ãcr

2 Þacr
2 ), then the probability density

P(x) can be characterized by three probability maxima
the graph. This characteristic causes domain No. 8c in
phase diagram in Fig. 1, separated from domain No. 8b
the curve~f! determined by

q5
3~n224n15/2!

n~n223n21!
, n>5. ~31!

On the left side of this curve,ãcr
2 ,acr

2 , and as the noise
amplitude grows, there will be two phase transitions: at
increasing ofa0

2 over ãcr
2 there is a transition from a phas

with one probability density maximum to one with thre
maxima, while at a further increase overa0

25acr
2 there is a

transition to a phase with two maxima. At the right side
the curve~31! a phase transition occurs between phases w
one and two maxima.

In the case of dichotomous noiseq51/2 and so we have
ãcr

2 5acr
2 52(n22). As to the interval 2,n,3 belonging to

domain No. 5a, where trichotomous noise generates ei
one or three maxima to the probability density, the limit
q˜1/2 leads to the disappearance of the central maximu

As the calculation of the critical parameterãcr
2 in the gen-

eral case requires the solution of a transcendental equatio
is impossible to determineãcr

2 by simple expressions like Eq
~29!. Actually, numerical values can be obtained by co
puter and some estimations can also be made. Still, a pre
analysis is possible at those points of the phase space w
the probability densityP(x) is expressed by elementar
functions. This could be illustrated by the following ex
amples.

~i! On the curven51/q ~see Fig. 1! the densityP(x)
takes the form

P~x!5
2~n21!

a0
A11

y2

2 S 12
uyu
a0

D n22

.

It can be seen easily that the critical parameterãcr
2 is given

by

ãcr
2 58~n22!~n21!.

~ii ! For the pointn56, q51/3 ~domain No. 8b! one can
get

P~x!5CA11
y2

2 S 12
uyu
a0

D 3S uyu
a0

1
1

3D ,

whereC is the normalizing coefficient. Three phases with t
transitions atãcr

2 522.5 andacr
2 524 can be discerned.

~iii ! In the pointn52, q51/4 @see curve~c! in Fig. 1#
the probability densityP(x) takes the form

P~x!5
1

2pa0

A11
y2

2
lnU11A12y2/a0

2

12A12y2/a0
2U .
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PRE 60 1379TRICHOTOMOUS NOISE-INDUCED TRANSITIONS
The critical parameter equalsãcr
2 '27.09.

The phase diagram of the Hongler model with tricho
mous noise displayed in Fig. 1 is rather complicated, cons
ing of 16 different phases. Analogously, dichotomous no
induces five phases in the phase space (a0 ,n), whereas
Gaussian colored noise does but two@2#. However, there is a
common feature for the phase transitions of these three n
patterns at the Hongler model: a growth of the noise inten
changes the central maximum of the probability density
y50 to a minimum; i.e., the maximum is split into two~see
Fig. 1, domains Nos. 5b, 8b, and 8c!. Following @2#, one can
see that in the cases of both the Hongler model with tricho
mous as well as dichotomous noises and the GCN model
noise correlation timetcor influences the location of the pur
noise-induced transition point at which the stationary dis
bution aty50 switches over from a monomodal to a bim
dal behavior. Recall that in the white noise case the crit
variance at which this phenomenon occurs iss2[sc

254. In
the case of GCN with the correlation function

^ f ~ t1t!, f ~ t !&5
m2

2n
e2nutu, n[1/tcor ,

the white-noise limit corresponds tom˜`, n˜` such
that m2/n25s2 is finite. Hence, for white noise one ca
write

sc
25S m

n D
c

2

54,

which could be compared with the corresponding value
the GCN case:

sc
25S m

n D
c

2

5414tcor .

Here the effect of the nonvanishing noise correlation ti
increases the noise intensity, which is necessary to ind
transitions@2#. In the case of dichotomous noise the whit
noise limit corresponds toa0˜`, n˜` such thats2

52a0
2/n is finite. The intensitysc

2 , necessary to induce criti
cal behavior in the model, decreases as the correlation
tcor51/n increases@2#:

sc
25S 2a0

2

n D
c

5428tcor , tcor,1/2.

There is an upper limit for the noise correlation time, beyo
which the critical behavior disappears.

In the case of trichotomous noise the white-noise lim
corresponds toa0˜`, n˜` such thats254qa0

2/n is fi-
nite. The intensitysc

2 , necessary to induce critical behavi
in the model, is of the form

sc
25S 4qa0

2

n D
c

54~122tcor!

3S 113tcor

122q

2q23tcor
D.428tcor ,
-
t-
e

ise
ty
t

-
he

-

l

r

e
ce
-

e

d

t

tcor,2q/3. ~32!

There is also an upper limit for the noise correlation tim
beyond which the critical behavior disappears. Evidently,sc

2

tends to infinity, if tcor˜2q/3 and qÞ1/2. It can also be
seen that ifq,0.3, then the critical intensity of the noisesc

2

increases monotonously astcor increases. In this sense th
model resembles the GCN Hongler model.

In caseq.0.3 there is another critical value for the co
relation time:

t25
1

3
@2q2A~324q!~1/22q!#.

If the correlation time is less than that,tcor,t2, then astcor

decreases,sc
2 increases and vice versa. Thus, one can

here common features with models with dichotomous nois
It is most remarkable that there is not only an upper lim

for the noise correlation time, present also in the case
dichotomous noises, but there appear also nonzero minim
the critical intensitysc

2(tcor) at tcor5t2 ,q.0.3:

sc
2~t2!54~126t2

2!>4/3.

VI. DISCUSSION

We have applied the method used in Secs. IV and V to
Gompertz and generalized Verhulst models, Eqs.~15! and
~17!. Their phase diagrams are similar to each other, wh
12 different phases can be distinguished there~see Fig. 2!.
Compared with the symmetric Hongler model there are
following characteristic features beside asymmetry:~i! There
are no extrema of the stationary probability density at
valuesy.0 in the domain ofn.1/(12q) ~domains Nos.
3–8!. ~ii ! In domains Nos. 5 and 8~wheren.1/q)P„x(y)… is
monomodal at any value of the noise amplitudea0; at a
growing a0 the maximum shifts to lesser values ofy. ~iii !

FIG. 2. The (q,n,a0) phase diagram for the steady-state beh
ior of the Gompertz’ and generalized Verhulst models with t
chotomous noise. The curves~a!–~d! coincide with those in Fig. 1:
~a! n51/(12q), ~b! n52/(12q), ~c! n51/(2q), and ~d! n51/q.
The distributions ofP„x(y)… versusy for the different domains
formed by the curves are sketched. In domains Nos. 3, 4, 6, a
the variants with additional extrema are caused by the condi

a0.ãcr .
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The asymmetric Hongler model~wherel0,0) at a decreas
ing l0 behaves ever more similarly to the Gompertz a
Verhulst models, especially ifa0,ul0u.

A major virtue of the models with trichotomous noise
that they constitute another case admitting an exact ana
cal solution for the stationary probability density for an
value of the correlation time and the flatness parameted
51/(2q). Though both the dichotomous and trichotomo
noises may be too rough approximations in most pract
cases, the latter is more flexible, including all cases of
dichotomous noises and, as such, revealing the essence
peculiarities of the latter.

It is worth while mentioning that experimental eviden
of noise-induced transitions has been obtained~for reference
surveys see@2,3#!. Markovian trichotomous noise is rathe
well suited for experimental realization and hence a deta
quantitative comparison of experimental results and theo
ical predictions should be feasible. We envisage direct ap
l

,

g

d

d

ti-

s
al
e
the

d
t-

li-

cability of models with trichotomous noises in some bio- a
ecosystems. For instance, wind either can carry the seed
a plant to different directions~two in a one-dimensiona
case! depending on its direction~noise parametera56a0)
or nowhere (a50) if its speed does not exceed a critic
value. The same way casual water flow in a lake either ca
cannot cause a flux of sediments and, in principle, the pha
met in our diagrams may well emerge in some way in
resulting sediment distributions. In natural systems transp
of particles can also be caused by noise-induced curr
generated at ratchetlike potentials. As has been shown@10#,
the value of the noise flatness can be decisive for both
intensity and the direction of the current, and besides it
cause a separation of particles. It is remarkable that with
trichotomous noises the flatness parameter, contrary to
dichotomous and GCN noises, can be anything from 1 to`.

Details known about the solutions of Eq.~8! may be of
use in testing approximate methods in the theory of stoch
tic differential equations.
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